人工智能走进ICU:可预测病人死亡 准确率达93%

量子位
佚名
    基于监测患者生命体征各种设备所提供的实时数据,ICU似乎是人工智能工具的完美使用场景,可以用来判断患者的实时病情以及病情何时可能恶化。 医院对于自家的重症监护室(ICU...
    基于监测患者生命体征各种设备所提供的实时数据,ICU似乎是人工智能工具的完美使用场景,可以用来判断患者的实时病情以及病情何时可能恶化。

医院对于自家的重症监护室(ICU),往往有一个不成文的期望:减少“在病床上去世”事件的发生。这种想法乍一听有点奇怪,但可以理解。

这个期望可能很快就能实现了。基于监测患者生命体征各种设备所提供的实时数据,ICU似乎是人工智能工具的完美使用场景,可以用来判断患者的实时病情以及病情何时可能恶化。

在具有多种传感器的ICU中,人工智能系统可以洞悉生死

ECRI研究所的Priyanka Shah说:“很多医院都有兴趣开发早期预警系统,来预测脓毒症、心脏骤停和呼吸停止等威胁生命事件的发生。”ECRI研究所是一个为医疗保健行业评估医疗程序、设备和药物的非营利机构。

学术研究人员和医疗设备公司现在都试图找出,哪些医疗设备的组合可以提供患者病情恶化的最佳测量指标。Shah说,里解决这个技术挑战之后,研究人员还必须通过实验证明这个工具的“临床意义”。也就是说,不仅要证明技术的有效性,而且要证明接下来该技术可以被整合到医院的工作流程中,为医院节省开支。

在ICU智能化的任务中,最艰巨的部分是说服医疗行业相关人员,包括FDA监管者、思维已定型的临床医生和想省钱的医院管理人员。因为从技术方面来看,这方面的研究大有前途。

PICU中的生死预测

儿科重症监护室(PICU)内的场景,总是让人心痛。

在新生儿病房里,脆弱的新生儿躺在被机器和屏幕包围的塑料恒温箱内。在病房里,孩子们连接着管子进行静脉注射,他们勇敢的微笑和明亮的卡通壁画相映衬。

在洛杉矶儿童医院,数据科学家Melissa Aczon和David Ledbetter提出了一种人工智能系统,这个系统可以让医生们更好地了解,哪些孩子的病情可能会恶化。

Aczon和Ledbetter都在一个名为“虚拟PICU”的医院研究部门内工作。在这里,他们和那些渴望看到操作上有改进的临床医生合作,共同开发这个人工智能系统。Aczon说:“他们的观点是,在ICU里,医患之间的接触一直在发生,并产生数据。我们有道德责任从这些病例中学习,并将所学到的经验来更好地治疗接下来的患者。”

他们想从训练一个能够进行精确预测的AI系统开始,所以,他们设计了一个预测PICU死亡率的实验系统。他们从医院电子健康记录获取孩子的生命体征数据(通常每隔几分钟测量一次),已有的实验室检测结果、用药信息和执行的治疗方案等。

他们使用了PICU里超过12,000名患者的健康记录,机器学习程序在数据中发现了相关规律,成功识别出了即将死亡的患者。该程序预测死亡的准确率达到了93%,明显比目前在医院PICU中使用的简单评级系统表现更好。Aczon和Ledbetter在Arxiv上发表了相关论文,公布了他们的研究成果。

他们实验的创新点是使用了一种叫做循环神经网络(RNN)的机器学习方法,这种方法擅长处理持续的数据序列,而不是从某一个时刻的数据点直接得出结论。“RNN网络是处理临床数据序列的一种有效方法,”Aczon说,“它能够整合新产生的信息序列,得到准确的输出。”所以在程序中,RNN网络表现得更好,因为它能够随着时间的推移,根据病人最近12小时的临床数据,做出最准确的预测。

虽然这个系统还处于实验阶段,但Aczon和Ledbetter提到,这样的工具将在PICU中有很大的用途。当然,如果这个死亡率预测软件在医院投入使用,医生不会满足于只是获得病人的死亡风险评分。“风险评估只是第一步,”Ledbetter说,“一旦你知道了病人将会发生什么,你就可以基于患者病情思考如何进行干预和防止患者病情恶化情况的发生。”

预防ICU危机

还有专门的公司,在试着把机器学习用到ICU里。

AreteX系统公司的联合创始人Wassim Haddad提到:“我们的使命是在ICU单元里通过自动进行重症监护,来降低死亡率。”该公司即将更名为AutoMedica,专注于优化ICU护理的两个重要部分,分别是通过机械呼吸机管理患者的呼吸量,以及管理静脉注射的实时液体量。

Haddad还提到,在美国,每年有570万人被收入ICU,其中有230万人需要机械呼吸机帮助他们呼吸,但是这里面的约80万人会遇到通气机不同步的问题。“如果他们没有足够镇静,他们往往和呼吸机进行对抗,”Haddad解释说,“如果他们想吸气,但机器说,不,你要呼气,这样的矛盾情况可能导致患者极度焦虑。”

呼吸治疗师在帮助使用机械呼吸机的病床患者进行呼吸

AreteX公司的工程师创建了一个机器学习工具,这个工具可以根据患者呼吸机的数据来识别不同类型的呼吸同步情况。这个系统能够发送警报给护士或呼吸治疗师,能够紧急为患者加强镇静作用,防止患者与呼吸机进行对抗。该公司最近在东北乔治亚医学中心开始进行临床试验,来测试该系统的临床性能。

目前的解决方案只是刚完成了公司使命的第一步。“我们希望我们的技术不只是作为现在医院的临床决策支持,”Haddad说,“而是将来能够作为一个完全自动化的系统,可以自主改变呼吸机的起搏。”然而,为了到达那个阶段,我们需要做大量的临床试验,来向监管机构和谨慎的医院管理者证明该系统的安全性。

AreteX公司还有一个类似的程序,可以监测大多数ICU患者通过静脉注射可以接受的液体量,来增加患者血液容量和升高患者血压。Haddad还说:“目前的液体管理程序效率不高。通常是医生给护士一个命令,进行手动改变注射速率。几个小时后,医生再重新评估病人来制定注射的液体量。”要提到的是,ICU的工作人员必须小心平衡好这个液体量的关系,因为患者很容易休克,同时容易受到由于太少或太多的注射液体量引发的严重并发症。

Haddad研发的这个系统,采用机器学习方法来测量患者对正在使用的流体注射量的持续响应,随时间改变注射量来保持患者的病情稳定。AreteX公司目前在东北乔治亚医学中心测试这个流体管理系统。

Haddad还说:“随着美国人口的老龄化,能够在急诊室和ICU工作的应急临床医生紧缺,实现自动化可能是唯一的解决方法。如今85岁以上的人群有300万,到2030年将达到900万,这将给国家的ICU带来巨大的压力。”

THEEND