何为数字孪生?
(1)模型维度
观点一认为数字孪生是三维模型、是物理实体的copy或虚拟样机。这些认识从模型需求与功能的角度,重点关注了数字孪生的模型维度。根据现有文献分析,理想的数字孪生模型涉及几何模型、物理模型、行为模型、规则模型等多维多时空多尺度模型,且期望数字孪生模型具有高保真、高可靠、高精度的特征,进而能真实刻画物理世界。
(2)数据维度
Grieves教授曾在美国密歇根大学产品全生命周期管理(PLM)课程中提出了与数字孪生相关的概念,因而有一种观点认为数字孪生就是PLM。数据是数字孪生的核心驱动力,数字孪生数据不仅包括贯穿产品全生命周期的全要素/全流程/全业务的相关数据,还强调数据的融合,如信息物理虚实融合、多源异构融合等。此外,数字孪生在数据维度还应具备实时动态更新、实时交互、及时响应等特征。
(3)连接维度
观点二认为数字孪生是物联网平台或工业互联网平台,这些观点侧重从物理世界到虚拟世界的感知接入、可靠传输、智能服务。从满足信息物理全面连接映射与实时交互的角度和需求出发,理想的数字孪生不仅要支持跨接口、跨协议、跨平台的互联互通,还强调数字孪生不同维度(物理实体、虚拟实体、孪生数据、服务/应用)间的双向连接、双向交互、双向驱动,且强调实时性,从而形成信息物理闭环系统。
(4)服务/功能维度
观点三认为数字孪生是仿真,是虚拟验证,或是可视化,这类认识主要是从功能需求的角度,对数字孪生可支持的部分功能/服务进行了解读。目前,数字孪生已在不同行业不同领域得到应用,基于模型和数据双驱动,数字孪生不仅在仿真、虚拟验证和可视化等方面体现其应用价值,还可针对不同的对象和需求,在产品设计、运行监测、能耗优化、智能管控、故障预测与诊断、设备健康管理、循环与再利用等方面提供相应的功能与服务。可见数字孪生的服务/功能呈现多元化。
(5)物理维度
观点四认为数字孪生仅是物理实体的数字化表达或虚体,其概念范畴不包括物理实体。实践与应用表明,物理实体对象是数字孪生的重要组成部分,数字孪生的模型、数据、功能/服务与物理实体对象是密不可分的。数字孪生模型因物理实体对象而异、数据因物理实体特征而异、功能/服务因物理实体需求而异。
综上所述,当前对数字孪生存在多种不同认识和理解,目前尚未形成统一共识的定义,但物理实体、虚拟模型、数据、连接、服务是数字孪生的核心要素。不同阶段的数字孪生呈现出不同的特点,对数字孪生的认识与实践离不开具体对象、具体应用与具体需求。从应用和解决实际需求的角度出发,实际应用过程中不一定要求所建立的“数字孪生”具备所有理想特征,能满足用户的具体需要即可。
数字孪生能与NewIT的关系
(1)数字孪生与物联网
对物理世界的全面感知是实现数字孪生的重要基础和前提,物联网通过射频识别、二维码、传感器等数据采集方式为物理世界的整体感知提供了技术支持。
(2)数字孪生与3R(AR,VR,MR)
虚拟模型是数字孪生的核心部分,为物理实体提供多维度、多时空尺度的高保真数字化映射。实现可视化与虚实融合是使虚拟模型真实呈现物理实体以及增强物理实体功能的关键。VR/AR/MR技术为此提供支持:VR技术利用计算机图形学、细节渲染、动态环境建模等实现虚拟模型对物理实体属性、行为、规则等方面层次细节的可视化动态逼真显示;AR与MR技术利用实时数据采集,场景捕捉,实时跟踪及注册等实现虚拟模型与物理实体在时空上的同步与融合,通过虚拟模型补充增强物理实体在检测、验证及引导等方面的功能。
(3)数字孪生与边缘计算
边缘计算技术可将部分从物理世界采集到的数据在边缘侧进行实时过滤、规约与处理,从而实现了用户本地的即时决策、快速响应与及时执行[58]。结合云计算技术,复杂的孪生数据可被传送到云端进行进一步的处理,从而实现了针对不同需求的云-边数据协同处理,进而提高数据处理效率、减少云端数据负荷、降低数据传输时延,为数字孪生的实时性提供保障。
(4)数字孪生与云计算
数字孪生的规模弹性很大,单元级数字孪生可能在本地服务器即可满足计算与运行需求,而系统级和复杂系统级数字孪生则需要更大的计算与存储能力。云计算按需使用与分布式共享的模式可使数字孪生使用庞大的云计算资源与数据中心,从而动态地满足数字孪生的不同计算、存储与运行需求。
(5)数字孪生与5G
虚拟模型的精准映射与物理实体的快速反馈控制是实现数字孪生的关键。虚拟模型的精准程度、物理实体的快速反馈控制能力、海量物理设备的互联对数字孪生的数据传输容量、传输速率、传输响应时间提出了更高的要求。5G通信技术具有高速率、大容量、低时延、高可靠的特点[59],能够契合数字孪生的数据传输要求,满足虚拟模型与物理实体的海量数据低延迟传输、大量设备的互通互联,从而更好的推进数字孪生的应用落地。
(6)数字孪生与大数据
数字孪生中的孪生数据集成了物理感知数据、模型生成数据、虚实融合数据等高速产生的多来源、多种类、多结构的全要素/全业务/全流程的海量数据[2]。大数据能够从数字孪生高速产生的海量数据中提取更多有价值的信息,以解释和预测现实事件的结果和过程。
(7)数字孪生与区块链
区块链可对数字孪生的安全性提供可靠保证[60],可确保孪生数据不可篡改、全程留痕、可跟踪、可追溯等。独立性、不可变和安全性的区块链技术,可防止数字孪生被篡改而出现错误和偏差,以保持数字孪生的安全,从而鼓励更好的创新。此外,通过区块链建立起的信任机制可以确保服务交易的安全,从而让用户安心使用数字孪生提供的各种服务。
(8)数字孪生与人工智能(AI)
数字孪生凭借其准确、可靠、高保真的虚拟模型,多源、海量、可信的孪生数据,以及实时动态的虚实交互为用户提供了仿真模拟、诊断预测、可视监控、优化控制等应用服务。AI通过智能匹配最佳算法,可在无需数据专家的参与下,自动执行数据准备、分析、融合对孪生数据进行深度知识挖掘,从而生成各类型服务。数字孪生有了AI的加持,可大幅提升数据的价值以及各项服务的响应能力和服务准确性。
综上所述,数字孪生的实现和落地应用离不开New IT的支持,只有与New IT的深度融合数字孪生才能实现物理实体的真实全面感知、多维多尺度模型的精准构建、全要素/全流程/全业务数据的深度融合、智能化/人性化/个性化服务的按需使用以及全面/动态/实时的交互。
数字孪生功能与作用
数字孪生以数字化的形式在虚拟空间中构建了与物理世界一致的高保真模型,通过与物理世界间不间断的闭环信息交互反馈与数据融合,能够模拟对象在物理世界中的行为,监控物理世界的变化,反映物理世界的运行状况,评估物理世界的状态,诊断发生的问题,预测未来趋势,乃至优化和改变物理世界。数字孪生能够突破许多物理条件的限制,通过数据和模型双驱动的仿真、预测、监控、优化和控制,实现服务的持续创新、需求的即时响应和产业的升级优化。基于模型、数据和服务等各方面的优势,数字孪生正在成为提高质量、增加效率、降低成本、减少损失、保障安全、节能减排的关键技术,同时数字孪生应用场景正逐步延伸拓展到更多和更宽广的领域。
数字孪生适用准则是什么?
企业在应用数字孪生前,面临的首要决策问题是本企业是否需要用数字孪生?是否适用数字孪生?是否值得使用数字孪生?事实上,数字孪生并非适用于所有对象和企业。为辅助企业根据自身情况做出正确决策,本节尝试从产品类型、复杂程度、运行环境、性能、经济与社会效益等不同维度总结数字孪生适用准则。