机器人视觉产业的春天,解决智能制造看不见的问题

互联网
互联网
目前,机器视觉在制造业质量控制领域是至关重要的技术,尤其在汽车制造行业有大量的应用案例,包括汽车零部件尺寸、外观、形状缺陷检测,以及视觉引导定位等。还有,在食品行业包装和装瓶操作中需要使用机器视觉系统。

随着人工智能技术兴起以及边缘设备算力的提升,机器视觉的应用场景不断扩展,并催生了巨大的市场。根据美国领先的调查机构Grand View Research的分析,预计到2025年全球机器视觉市场规模将达到182.4亿美元,复合年增长率为7.7%。

在智能制造的浪潮下,生产线对工业设备有了新的要求,对质量检验和生产的需求不断增加。而新一代机器视觉系统能够在短短几秒内处理大量的信息,如此快速的处理能力,为机器视觉在多个领域的应用铺平了道路。

目前,机器视觉在制造业质量控制领域是至关重要的技术,尤其在汽车制造行业有大量的应用案例,包括汽车零部件尺寸、外观、形状缺陷检测,以及视觉引导定位等。还有,在食品行业包装和装瓶操作中需要使用机器视觉系统。

此外,机器人行业的发展也是推动机器视觉的一个重要因素,越来越多的机器人在工业应用解决方案中采用视觉进行引导,以执行各种复杂的工作任务,包括汽车、制药、包装、食品和饮料等的解决方案。

机器视觉技术升级触发新机遇

近年来,出现了许多推动机器视觉行业发展的新技术,特别是在识别能力方面,识别已经成为机器视觉的核心竞争力。视觉识别功能可以检查物品的存在或不存在,以及判断是否有装配缺陷。视觉识别还可以是用于定位对象等,例如用于机器人定位抓取目标对象,或者可以对物体进行自动分类。

3D机器视觉系统的出现为识别带来了惊喜。在大多数情况下,3D视觉系统能够更详细地检测物体对象。无论是在检测应用中进行更高级识别,还是在计量应用中实现更好对象差异化,3D视觉系统都能带来更多先进的功能。业内首家基于机器深度学习的3D通用视觉软件操作系统平台是微链WeRobotics Cognition System,具有容易操作、容易掌握、容易部署、容易维护的特点,通过将人工智能(AI)与WEROBOTICS软件结合在一起,微链WeRobotics Cognition System能够解决对于传统机器视觉系统而言过于困难、繁重或昂贵的复杂应用。通过搭载于机器人前端的机器人感知系统,微链WeRobotics认知处理系统可以实时采集机器人所观察到的图像和感受到力量反馈,微链认知处理系统通过WEROBOTICS软件算法,将数据进行重构、计算和处理。从而使机器人获得认知能力、能够根据不同的工件,在不同的位置和维度,以及合适的力量进行抓取或者装配、检测。

此外,在高光谱成像和彩色成像方面,高光谱技术将允许机器视觉检测超出可见光以外的光谱,以获得更强大的成像画质,而彩色成像允许在检查应用中进行高级颜色分析。

还有,深度学习的发展对于推动机器视觉识别有重要的作用,通过不断学习复杂物体检测和分类技术,机器视觉系统能从周围环境中收集更多的知识经验,最终达到自主和准确识别出对象。机器视觉识别是机器视觉应用中的核心过程,将机器视觉推向更光明的未来。

工业4.0下智能工厂的趋势

近年来,以工业4.0和工业物联网为主题产生的“智能工厂”概念已成为一个越来越流行的术语,通过工业物联网技术,实现智能工厂所有设备、产品和人的连接,最终能够提高生产率、减少浪费和停机时间,以及优化制造流程。

在生产线上,机器视觉系统主要负责图像采集、处理以及测量,根据不同的质量和安全参数捕获产品图像以进行分析,通常系统包括照明、镜头、图像传感器、视觉处理和通信设备等部分,是软件和硬件的组合,高性能的机器视觉系统有助于可靠地解决复杂的工业任务。

机器视觉在未来的智能工厂中发挥着关键作用,未来自动化生产线将能够自我调整,以最大限度地提高质量、产量和盈利能力。智能工厂很快会从概念走向现实,新的生产技术为制造业、物流和仓储环境提供改善整体流程的机会。

THEEND

最新评论(评论仅代表用户观点)

更多
暂无评论