2013年,美国有一起充满争议的案子,一个因为偷窃罪被判刑的男人把威斯康星法院告了。原因是他被判整整8年有期徒刑,不是因为他的罪行,也不是因为法官的判断,而是因为一个AI(人工智能)认为,他对社会具有“高危险性”。大数据时代,我们关注最多的是数据的安全和隐私,然而,数据加上算法所带来的问题,或许要比安全和隐私重要得多。
大数据让算法前所未有的强大
机器学习和深度神经网络,克服了算法设计中人的局限;只要有数据,只要数据中有统计规律,算法就能找到这些规律。人工智能技术近几年的火热,主要得益于机器学习、深度神经网络方面的技术突破,以及大数据技术的成熟。这些技术的突破使得从前很多被认为机器不可能解决的问题,变得可以解决。过去技术人员开发信息系统,需要将领域知识在头脑中转换为算法和程序。这些技术突破改变了这一现状,消除了对领域知识的依赖。算法可以通过机器学习的方法,从大量数据中自动提取出来,不再需要人来编写。这不仅减少了错误遗漏、降低了开发成本,并且可以随着数据的变化自动更新,而不会因为现实的变化而落伍。
算法存在的问题
算法没有价值判断,最终是人给计算结果加上了价值判断。但是一旦人们把算法给出的结果,用在处理社会关系上,这些结果就对相关的每个人产生了意义。
算法让一部分人掌握了过大的权力。虽然技术突破和大数据让算法开发变得容易,但是获取到足够的数据和计算资源,开发并利用算法,仍然是一件具有相当门槛的事情。能够掌握利用算法的仍限于少数人,这就使得这些少数人在社会生活中相对于其他人占有了极大的优势。为了社会公平,我们对拥有财产优势的人征收更多的税负,对掌握权力的人施加种种制衡,但是我们对拥有算法优势的人如何限制,仍然没有可行的思路。
对算法的迷信。技术突破让算法不需要人编写,虽然减轻了人开发算法的负担,但也让人更难以理解算法。大多数深度学习产生的算法都让人无法理解,但是由于大多数情况下算法是有效的,人们即使不理解,也乐于利用算法。这就产生了一个风险:没人知道算法的边界和失效条件,因此也就不能判断算法何时会出错。由于不理解,使用者往往倾向于忽视这种风险,于是形成了对算法的迷信。威斯康星州的判案系统就是这种情况。
相应的社会约束机制难以跟上。新技术只要有效,很快就会在社会生活中广泛应用,但是新技术往往深刻地改变了人们的生活方式,而与这些改变相适应的社会约束机制,只能在新技术的社会影响日益明确之后,才能逐渐建立起来。社会规范总是滞后于社会现实,在技术快速发展的当今,这种滞后造成的问题尤为显著。今天人工智能对人们日常生活的影响,恰如一百年前汽车普及造成的影响。当美国普通家庭开始拥有汽车很多年之后,道路信号、交通规则、驾照考试等设施和机制才逐渐完善,跟上技术变革的脚步。
在变化中探索秩序。人工智能技术仍在快速发展过程中,对社会生活的种种影响才刚刚开始显现。对此我们既不能因噎废食,阻碍技术发展,也不能放任自流,任由丛林法则支配,而是必须因应技术发展的潮流和社会现实的变化,不断探索调整,兴利除弊,让技术发展始终作为推动社会进步的动力。