本文来自CPS中安网。
需求爆发与技术质变,产业大变革已然来临。随着AI,物联网,大数据,云计算等技术的发展,安防正从传统的视频监控走向智能安防,从传统的防控辅助系统走向效率提升的生产系统,智能安防走向千行百业。
在走向千行百业的进程中,不同行业对于覆盖的纵深要求不断提升,多维感知数据的端云协同和对数据的实时交互对于网络的时延、带宽要求越来越高,同时防控走向深水区,对于防控的立体化、系统化、机动化要求不断提升。
于是,在行业背景下,AIoT刷新了安防新高度,也开启了另一段智慧之旅。
AIoT入安防尤其时代背景,也有现实所需。用户在产业大调整和大升级中,单纯依靠人工进行海量数据的处理显然已经无法满足各行各业的需求。人工智能带来了高效智能的技术手段,可以很好的完成对海量的、复杂无序数据的处理。
而有了AI的助力,IoT系统也将实现流程的优化以及产品交互体验的升级。发展到目前,将AI技术和IoT技术进行融合,构建AIoT系统已成为各大行业向数字化转型升级的必经之路。
01、AIoT为安防带来的新意
AIoT下的安防,不再是曾经的安防,尽管还带有诸多原有的色彩,从行业几大龙头企业纷纷转向智能物联的战略布局中,可窥见一斑。
那,AIoT给安防带来哪些不一样,或者说刺激安防又将如何进阶?
会思考的物联网,向万物互联转变
对于AIoT的概念,业内普遍认为即人工智能物联网,也称智能物联网,广义上是指人工智能技术与物联网技术的融合及其在实际场景中的应用。
AIoT是新的物联网应用形态,将物联网产生并收集到的数据存储于云端,通过人工智能、大数据进行分析,并赋予其智能化特性,实现真正意义上的万物互联。
可以理解为,是给IoT加装了一个AI大脑,让设备的简单连接上升为智能交互。
而IoT相对于AI而言,则是一大超级感知系统,依托丰富的物联网传感设备,可进行视觉、听觉、温度、环境等各类传感数据的采集,并将这些数据发送给AI进行分析和处理。
与此同时,这些数据也是AI进行深度学习的重要养料,训练出越来越智能的AI。为一种新的IoT应用形态,AIoT与传统的IoT区别在于,传统的物联网是通过有线和无线网络,实现物—物、人—物之间的互联,而AIoT不仅是实现设备和场景间的互联互通,还要实现物—物、人—物、物—人、人—物—服务之间的连接和数据的交互。
物联网与人工智能相融合,最终追求的是形成一个智能化生态体系,在该体系内,实现不同智能终端设备之间、不同系统平台之间、不同应用场景之间的互联互通。
如此一来,云边端架构在安防盛行。以安防门类中最为传统的防盗报警为例,软硬一体是安防产品的第二次工具革命。
中科伟业总线型网络报警主机,以报警视频为核心,以网络传输为枢纽,运用互联网思维、大数据、云计算以及智能技术系统集成综合业务管理平台。
它将设备以图标的形式在平台中进行一一展示,可直观的获取整个区域的设备运行状态,可选择设备进行指令操作管理。
在设置界面总共有设备工具、设备管理、防区管理、报警记录、系统设置、键盘配置、系统维护、服务热线等八项功能。
为此,精准灵活的控制与精细化管理都在平台之上,游刃有余。既然是网络线产品,通信能力是考量之一。
该产品不仅保留了传统的载波通讯,短距离项目上可实现两芯线供电、通讯,节省通讯线缆,还加入了485通讯、CAN总线通讯,通讯距离可达2千米至3千米。
同时,总线型网络报警主机还有具有以太网通讯、光纤、电话线通讯接口,全覆盖大中小项目的复杂通讯需求。
AIoT的十字路口:使能场景、做透行业
AIoT进入深水区,来到了应用的十字路口。该项融合性技术从技术演进历程来看,一般会经历自动化、设备连接、智能采集、信息可视化、大数据分析和智能预测的路径,实现从万物互连到万物智联的转变。
以当下视角来看,5G、AI技术、物联网技术与传统行业整合,AIoT时代有望进一步提升智能建筑、智慧城市、智能交通、智慧物流、供应链物联网等各领域的智能化程度。
未来,围绕场景来做千行百业,才能使场景变“小”,行业变“大”,在细分场景中做分门别类的个性化与定制化应用。
在当下,物联网应用与网络一体化已经成为一种潮流,信息技术革命与互联网发展正在促使工业发展向网络应用智能化转变。
在物联网建设影响下,各智能系统之间的联动性越来越强,面对千行百业场景,只有物联后才能由点到线,由线到面为用户提供高价值的智能场景方案。
2022,万物互联成为常态,而智能视觉物联网(SVIoT)则是新未来。
这意味着,推陈出新。智能视觉物联网是物联网的一次再造,利用各类图像传感器,包括监控摄像机、手机、数码相机,获取人、车、物图像或视频,采用图像视频模式识别技术对视觉信息进行处理,提取视觉环境中人、车、物视觉标签,并通过网络传输与视觉标签应用系统连接,提供便捷的监控、检索、管理与控制。
对于智能视觉物联网,在此届高交会上也能觅其踪影。
行业也是如此,AIoT在技术成熟后下探市场才能为行业所用。我们可以把行业看成由N各场景组成,所以行业逻辑和市场法规在2022年,AIoT也有变化。
列举交通行业来看,之前的智能交通建设,偏重硬件方面,缺乏软件平台来做业务梳理。而最近几年流行的数据中台,就是把感知端做互联共享,来打破业务与传统数据的之间的壁垒。
在杭州的智能交通智能中枢,最大限度的挖掘原始视频资源背后的价值,同时融合其他多维度的IoT数据,更好的赋能交通出行,整个视频智能中枢,由一底座双中台构成,阿里云的专有云/公共云底座,搭载视频业务中台和数据智能中台。
感知体系的多元、层次与立体化
视频、音频、气味、生物特征等技术的发展和成熟,全面掌控防控场景和目标的完整信息成为可能,在安防应用中越来越多的部署更多类别的感知设备,用于从更多维度采集目标信息,包括目标的各种要素、活动轨迹以及关联信息等,从而形成一个动态感知体系,实现防控工作的“无所不在、无所不知”目标。
针对某一特定的应用场景,相关前端感知设备实现全互联直通,逻辑上各感知设备一体化,当一个设备的感知到一条单维度信息后,通知其他设备从其他维度提取信息,对信息的准确性进行印证,从而实现群防群治,实现在前端就能完成一次感知信息的数据清洗,从而保证了感知信息的准确性。
只有验证有效的信息才会上报至后端系统和平台,在后端再进行数据综合应用,最终实现感知的多层运用。
一方面,可以提升准确度,减少误报;另一方面,通过本场归并,减少数据量,降低后端处理的压力。
当前,安防在感知运用上是一个个孤立的垂直结构,需要先由前端感知设备进行目标感知和信息采集,然后原始信息报送到后端业务系统进行结构化和业务语义化,最后业务数据汇总到中心数据综合应用平台(含大数据)进行数据治理和关联应用。
在感知运用信息链中前端设备和后端业务系统是垂直对应关系,只有到了中心数据综合应用平台才形成水平关系,才能面向多个业务系统进行多维数据综合和关联。
所以,我们在AIoT时代经常看到企业推出的“中枢大脑”。以紫光华智中枢大脑为例来看,一个城市的战“疫”,全面、精准、快速、预测是城市治理与风险防控建设目标,紫光华智“四引擎”各就各位并各司其职。
全面采集数据——构建城市立体管控圈。要驾驭数据,端侧的采集是第一步,也是关键一步。所以传统安防企业善于在采集端发力,这也是他们雄踞市场的制胜法则。
精准感知信息——多维特征融合定位疑似患者。为满足实战所需,感知的信息就需精准,而不是采集之后的眉毛胡子一把抓,同时,口罩遮住了行人的绝大部分特征,非约束场景下的摄像机无法精准定位到行人的感染路径。
快速认知知识——强化管控能力。知识是从信息中经过归纳、碰撞、流转、沉淀提炼而得到的有用资料,基于推理和分析,还可产生新的知识,体现了信息的本质和经验。快速认知知识,就是集中资源用最快的速度分析,快速把信息提取完成,让目标查找更便捷。
智慧预测预知——区域风险转化。当下用户对AI的期待之一就是能预测与预知,既能洞察当下,也能预知未来。复工开始后,海外的疫情爆发,哪些区域的疫情风险加大,如何防输入、防扩散、防聚集,及时发现风险因子是考题。
02、居家安防暴增后的AIoT物联延伸
智能家居安防产品在庞大的消费级智能硬件赛道中备受关注,消费级智能硬件行业整体发展前景向好。
一方面,用户需求在市场初步教育后细化升级,群体自发使用意愿增强;另一方面,智能硬件迎合用户刚需,随着产品技术与性能的提升,产品实用性和智能化程度同样得到升级。
具体来看,芯片、网络和元器件上的技术突破进一步推动了智能硬件发展。
首先,零部件成本降低和尺寸缩小使技术性能够稳定提升;其次,5G进入规模化商用阶段,高速网络的加速渗透将优化智能硬件使用体验。
相较于传统安防,智能安防最显著优势在于信息的即时反馈和同步,主动安全系统结合被动安全系统的部署将大大提升可靠性。
例如,Aqara全屋智能可以通过房屋各处的人体传感器和安全类传感器主动实时监测房屋状况,并及时发出警报。
据IDC数据,2021年中国家庭安全监控设备出货量增长率在60%以上,预计到2025年的出货量复合增长率也将达到35%以上。伴随家庭安防需求的大幅提升,智能硬件细分市场潜力不可小觑。
以豪恩这个转型的物联网家居企业为例来看,物联网传感器T3系列可以起到更好的联动作用,让用户体验到更加智能化的家居生活。
豪恩在物联网智能家居领域是强聚焦与深扎根,他们了解到在智能制造、工业互联网、物联网等技术快速发展的背景下,全球传感器产业呈现新的发展趋势。
传感器作为物联网底层核心部件,随着应用领域的不断拓展,越来越走向普通家庭用户。但物联传感器产品外观不精美、智能连接体验不好、传感性能不理想等,成为用户抱怨的问题。
为了解决用户痛点,豪恩潜心研发,全方位提升产品综合性能,豪恩T3系列新作一共8款新品,包括人体移动传感器、烟雾报警器、门窗传感器、燃气泄漏报警器、多功能网关、温湿度传感器、水浸传感器、场景开关。以人体移动传感器为例来看他们如何体现工匠精神。
该产品得益于豪恩多年在探测器领域的技术沉淀与潜心研发,搭载新一代菲涅尔透镜,防区密度提升3.4倍,并应用四元红外热释电传感器阵列,探测精准度更出众,解决传统透镜存在盲区的明显缺陷。
在功耗方面,zigbee应用层采用碎片化休眠机制,在保证用户体验及产品交互的情况下,无线通讯功耗下降60%以上,电池使用时间延长50%以上。
在安装方式上也进行了升级,磁吸式底座设计,探测方向任意可调,不破坏家居环境,老人、小孩使用也非常方便。吴志明谈及此,很是欣慰。
他现场拿了此产品做演示,精致小巧的设计感颠覆了记者对探头的认知。吴志明说,T3系列从设计理念到产品化共计八个月时间,在美观打造、凸显设计感,使之简单化和傻瓜化。
当然,该产品公司全体员工的智慧结晶和博采众长之作。
03、安防“芯”的物联之路
安防也有“芯”辰大海,产业从模拟到数字再到网络高清,直至智能时代。
每一时代的技术演进,都依赖于芯片技术的提升,其很大程度决定安防的整体功能、技术指标、稳定性、能耗、成本等。
而在智能时代,基于芯片为内核去做多场景智能应用,是一个基本技术逻辑。
那么,SoC芯片不在依赖美国的当下,瓴盛科技首颗型号为JA310的AIoT SoC,应运而生,为安防带来强劲的“芯”动力。
安防场景的多样性和碎片化明显,而与人工智能融合下的AIoT更面临诸多挑战——需求尚未定型,产品功能、性能不断变化;市场培育期的单一品类体量不大,难以摊薄研发成本;差异化场景对AI算法各不相同,AI算法各自为战等。
无论是对于软件、硬件或算法公司来说,AIoT描绘的万物感知互联的智能世界背后都可能是重复投入的高研发成本和各自画地为牢的掣肘。
面向智慧监控、人脸识别、视频会议、车载终端、运动相机等广泛的智慧物联网应用,力主打造开放式平台化解决方案。
JA310不仅外围接口丰富,同时芯片平台实现了软硬件解耦设计,做到BSP与应用开发分离。应用软件可以基于软件模拟器进行开发,确保其生态内的海量开发者和社区资源能快速实现软件生态开发进程,保证安卓的应用可以快速复用到Linux,对客户后期APP的开发以及生态系统建设有极大的帮助。
此外,开放式平台还使得基于JA310的系统实现了高可靠性和安全性,避免应用程序的任何故障造成导致系统宕机的危害。
结束语
纵观这几年,抛开传统安防企业不谈,也除了原本专注在人工智能及物联网领域的企业外,众多行业巨头也陆续高调布局AIoT市场,包括阿里、腾讯、百度等企业近年来都纷纷展示其在AIoT领域布局的意图和相关产品规划。
新兴企业踊跃加入,资本竞相争逐,经过近几年的持续铺垫和孵化,AIoT产业下的安防市场规模不断突破新高,这又将是安防历史进程中,浓墨重彩的一笔。