新一代人工智能科技需要创新,构建开放协同的人工智能科技

力力机器狗
近年来,我国人工智能技术和产业蓬勃发展,进入了新的发展阶段,但在人工智能基础理论与原始创新方面仍相对薄弱,核心智能芯片和基础元器件的自主研发生产能力与国际领先水平差距较大,存在关键环节受制于人的现象。

随着人工智能(AI)成为引领新一轮科技革命和产业变革的战略性技术,世界各国正积极抢占人工智能竞争制高点,争相制定相关国家发展战略和规划,以抓住人工智能发展带来的新机遇,掌握国际科技竞争中的主导权。我国已将人工智能技术发展提升到国家战略层面,2017年,国务院发布《新一代人工智能发展规划》,提出了面向2030年我国新一代人工智能发展的指导思想、战略目标、重点任务和保障措施,构筑了我国人工智能发展的先天优势;同时,明确提出要以提升新一代人工智能科技创新能力为主攻方向,构建开放协同的人工智能科技创新体系,全面支撑科技、经济、社会发展和国家安全。

10cc1ff9abd24c50ba6b4889bf9e4457(1).jpg

近年来,我国人工智能技术和产业蓬勃发展,进入了新的发展阶段,但在人工智能基础理论与原始创新方面仍相对薄弱,核心智能芯片和基础元器件的自主研发生产能力与国际领先水平差距较大,存在关键环节受制于人的现象;在系统软件领域,缺乏超前研发布局,不利于国内企业参与国际竞争,也使国民经济和国家安全存在远期隐忧。随着中美贸易摩擦升级、逆全球化等国际环境变化,摆脱对国外技术的体系性依赖,实现关键技术、重要设备等的自主可控,刻不容缓。为此,我国一直努力从提升核心技术竞争力、加强国产制造能力、掌握新兴产业主导权等方面来推动国产化进程。

10cc1ff9abd24c50ba6b4889bf9e4457(1).jpg

2017年12月,工业和信息化部印发《促进新一代人工智能产业发展三年行动计划(2018—2020年)》,提出实现神经网络芯片量产并在重点领域开展规模化应用,这对加速我国人工智能芯片自主研发、促进产业发展产生重大影响。2020年10月,十九届五中全会提出,把科技自立自强作为国家发展的战略支撑,到2035年,要在关键核心技术领域实现重大突破,这是我国首次将科技自立自强提高到国家战略层面。科技创新在“十四五”时期将备受重视,同时通过科技创新和国产化自主发展,必将进一步推动人工智能技术的发展和应用,改变当前对国外技术依赖性强的被动局面。软硬件是人工智能核心技术,影响人工智能深层次发展,同时也是未来我国角逐人工智能时代的重要内容。

10cc1ff9abd24c50ba6b4889bf9e4457(1).jpg

为进一步推动我国人工智能技术发展,本文分析人工智能核心软硬件技术的国内外发展现状,从技术、产业和政策等方面总结我国人工智能核心软硬件自主发展面临的挑战,提出未来人工智能核心软硬件发展的战略目标、重点发展任务,最后提出政策建议和保障措施。二、人工智能核心软硬件的国际发展现状(一)政府规划方面21世纪以来,人工智能发展迎来第三次浪潮,人工智能对科技、产业和社会变革带来的巨大发展潜力得到全球众多国家的普遍认同,美国、中国、欧盟、日本等国家和地区纷纷制定了人工智能国家发展战略或计划,围绕技术创新、人才培养、标准规范等开展全面布局,积极把握人工智能发展契机,抢占人工智能领域的发展主导权。

10cc1ff9abd24c50ba6b4889bf9e4457(1).jpg

美国继2016年发布《美国人工智能研发战略计划》后,在2019年启动“美国人工智能倡议”,确保其在人工智能领域的主导作用。2017年7月,我国发布《新一代人工智能发展规划》;同年12月,发布《促进新一代人工智能产业发展三年行动计划(2018—2020)》,积极推进人工智能理论、技术与应用总体达到世界领先水平,力争成为世界主要人工智能创新中心。2019年,德国、日本、韩国、俄罗斯等都不断推动和更新国家人工智能发展战略,以更好迎接快速发展的人工智能科技创新和经济社会发展新形势;另外,至少还有18个国家正在筹备制定国家人工智能发展计划。各国或地区推出的人工智能发展规划各有偏重、各具特色,在技术发展、创新性应用、数据互连互通、扶持创新企业、人才培育等方面都不尽相同。

10cc1ff9abd24c50ba6b4889bf9e4457(1).jpg

其中,中国、美国两国因具有开放的市场环境、海量数据资源、强有力的战略引领和政策支持、优秀的人工智能领域人才等多项优势,在人工智能发展的战略规划上更为全面;欧洲各国则将重心放在道德伦理标准制定与垂直行业应用方面。随着各国或地区相关政策和发展战略的完善并落地,人工智能各领域发展逐步形成了颠覆性创新不断涌现的新格局,人工智能竞争态势或将发生新的变化。(二)技术方面在人工智能核心硬件方面,根据应用领域不同,可以将智能芯片分为云端人工智能芯片、边缘人工智能芯片、新型人工智能芯片3类。

10cc1ff9abd24c50ba6b4889bf9e4457(1).jpg

在云端,通用图形处理器(GPU)被广泛应用于神经网络训练和推理;张量处理单元(TPU)等定制人工智能芯片使用专用架构实现了比同期中央处理器(CPU)和GPU更高的效率;现场可编辑逻辑门阵列(FPGA)在云端推理应用中也占有一席之地,具有支持大规模并行、推理延时低、可变精度等特点。在边缘计算领域,智能手机是目前应用最为广泛的边缘计算设备,自动驾驶是未来边缘人工智能计算的最重要应用之一,为此,推理计算能力、功耗和成本是应用于边缘设备人工智能芯片关注的主要因素。目前,云端和边缘设备在各种人工智能应用中通常是配合工作的,随着边缘设备能力不断增强,越来越多的计算工作负载将在边缘设备上执行。

10cc1ff9abd24c50ba6b4889bf9e4457(1).jpg

新型人工智能芯片主要包括神经形态芯片、近内存计算芯片、存内计算芯片等,目前仍处于探索研发阶段。在人工智能核心软件方面,智能计算框架软件呈现出龙头企业竞争进一步激烈的发展趋势,并以支持深度学习为核心向支持广泛人工智能领域扩展。同时,人工智能系统软件编译技术得到迅速发展,人工智能模型算法通用、易用与可移植水平也不断提高,在工业界和学术界涌现出许多优秀的深度学习专用编译器,用以解决不同上层应用在使用不同底层硬件计算芯片时的兼容问题,实现从单纯依赖定制基础库转变为与深度学习编译器协同发展。智能计算基础库为智能硬件提供智能计算基础算法加速库,逐渐成为智能硬件厂商的“标配”,目前已有多家企业推出了智能计算基础库。

10cc1ff9abd24c50ba6b4889bf9e4457(1).jpg

产业方面目前,全球人工智能技术与产业持续高速发展,已经基本形成了由芯片、数据、开发框架、算法、应用组成的产业生态,在计算机视觉、自然语言处理、跨媒体分析推理、自适应学习、群体智能、自主无人系统、智能芯片、脑机接口等核心技术方面取得突破性进展,人工智能典型应用产业和场景遍布安防、金融、交通、教育、医疗、制造等领域,极大提高了社会自动化程度,提升了工业生产力,创造出了新的经济效益;同时,人工智能技术对未来教育和劳动力转型也带来了新机会。预计到2030年,人工智能将为全球生产总值带来14%的额外提升。

10cc1ff9abd24c50ba6b4889bf9e4457(1).jpg

在人工智能核心硬件发展方面,全球整体水平处于技术和市场成熟的早期阶段,从通用型正逐步向定制化、专用化方向发展,产品主要涵盖云训练、云推理和终端推理3个领域,并在云计算、自动驾驶、智能安全、移动互联网等场景中得到了很好应用。2019年,全球人工智能芯片的市场规模为110亿美元;预计2025年,全球人工智能芯片市场规模将达726亿美元。随着人工智能关键技术在第五代移动通信(5G)、物联网、云计算和大数据等新兴技术领域不断取得突破性进展,未来人工智能应用市场前景将更加广阔,为人工智能加速完善创造发展空间。

10cc1ff9abd24c50ba6b4889bf9e4457(1).jpg

在人工智能核心软件方面,国际上的人工智能龙头企业积极开展智能计算框架软件开发,呈现出群雄竞争、国外垄断的发展态势。智能计算框架软件作为人工智能技术的引擎,主要用于计算、数据分析和自动推理。美国目前是人工智能算法发展水平最高的国家,在国际上占有绝对优势。我国仅有少数几家科技龙头企业拥有人工智能算法的开放平台,在人工智能基础及技术层企业中的基础算法及软件平台公司数量仅占4%。目前,主流的智能计算框架软件多为开源获取,随着国内科技优势企业主导的智能计算框架软件的进一步开源,我国开源市场将迎来更好的发展。

THEEND

最新评论(评论仅代表用户观点)

更多
暂无评论