GPU

随着GPU和ASIC等硬件的发展,我们不仅见证了计算架构的革命,也看到了这些技术如何推动人工智能从理论走向实践的进程。这种设计哲学的转变,从注重通用计算能力转向满足特定计算需求的高效能,不仅加速了AI应用的研发和部署,也大大扩展了AI技术的应用场景。
大模型潜力巨大,对智算能力的需求激增。但一个大规模的高性能智算集群,除了要GPU打底之外,网络、存储、甚至调度、加速引擎等软件能力,也成为了很多企业拥抱大模型的拦路虎。
自2020年以来,人工智能的爆发式增长显然推动了半工业的发展。基于GPU的人工智能处理需要尽可能强大,但只有依靠顶级互连,系统才能达到最佳状态。
在人工智能计算架构的布局中,CPU与加速芯片协同工作的模式已成为一种典型的AI部署方案。CPU扮演基础算力的提供者角色,而加速芯片则负责提升计算性能,助力算法高效执行。
如今,人工智能的硬件和软件应用已经发展成为专为优化人工智能和神经网络操作而设计的。其中包括神经处理单元(NPU),它们在加速人工智能任务方面的能力通常与图形处理单元(GPU)相媲美。

本站热榜

日排行
周排行
月排行
热点资讯